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Abstract. The occupations by hydrogen of octahedral and tetrahedral sites in palladium are 
determined with the simulation model of Gillan. They are in agreement with the predictions 
of a lattice gas model. The effect of lattice relaxation on the octahedral site energies of 
hydrogen in palladium alloys is investigated with the damped molecular dynamics technique. 
The diffusion coefficients of hydrogen in palladium, as determined from the simulations, are 
used to construct a useful random-walk model for the calculation of diffusion coefficients. 

1. Introduction 

The equilibrium behaviour of hydrogen in metals is often described by a lattice gas 
model (Lacher 1937, Hill 1956, 1960, Manchester 1976). In this model the hydrogen 
atoms are assumed to occupy the interstitial sites in a rigid inert metal lattice. Deviations 
from the ideal lattice gas model owing to elastic and electronic effects of the interstitial 
hydrogen atoms on the metal lattice can be accounted for by an effective mean-field 
hydrogen-hydrogen interaction (Feenstra et a1 1986). Lattice gas models are also used 
for the diffusion of hydrogen in metals. The simplest way to calculate the (tracer) 
diffusion coefficient of a lattice gas is by assuming that the particles make random walks. 
Fujita and Neugebauer (1988) have proposed a more sophisticated correlated walk 
model for interstitial diffusion in crystals. 

The objective of this paper is to investigate the validity of the lattice gas description 
for hydrogen in metals by comparison with computer simulations, which take into 
account the full interatomic potentials. 

Recently Gillan (1986) proposed a simulation model for hydrogen in palladium 
and solved it by the molecular dynamics technique. In the temperature range 
500 K < T < 1000 K,  where quantum tunnelling is expected to be of minor importance, 
Gillan could reproduce experimental diffusion coefficients well but could not reproduce 
the van Hove correlation function as determined by quasi-elastic neutron scattering. 
This discrepancy was attributed by Culvahouse and Richards (1988) to the form of the 
palladium-hydrogen potential. 

Instead of attempting to improve on the potentials, this paper is concerned with the 
comparison of the molecular dynamics solution of Gillan’s simulation model with the 
lattice gas approximation of this model. 

In § 2 of this paper the details of the molecular dynamics simulations are given. In 
§ 3 the equilibrium site occupations of hydrogen in palladium, as determined by the 

0953-8984/90/040845 + 11 $03.50 0 1990 IOP Publishing Ltd 845 



846 E Salomons 

Table 1. Parameters of the palladium-palladium potential (1) 
~ ~~ 

A,, ( e v )  345 5856 A 4  (eV) -129,0614 

A 2 ( e v )  -204 0164 Ah (eV) - 1.907 044 
A I ( e v )  -247 5615 A S  (eV) 25.393 65 

A i  ( e v )  292 8391 r , ,  (A) 3.305 

simulations, are compared with the values according to the lattice gas model. This 
section includes a discussion of hydrogen in palladium alloys, in terms of the simulation 
model. In § 4 the validity of the correlated walk lattice gas model mentioned above is 
investigated for hydrogen in palladium. 

2. Molecular dynamics method 

For completeness the inter-atomic potentials of the simulation model of Gillan (1986) 
are repeated here. It will be shown also that the simulations performed in this work yield 
diffusion coefficients of hydrogen in palladium in agreement with the values reported 
by Gillan. 

2.1. Potentials 

The potential between the palladium atoms is given by a polynomial which reproduces 
the phonon dispersion relations of palladium: 

, 6  

r < ro 

r > Y o .  

The values of the coefficients A,  and the cut-off radius ro are given in table 1. In the 
simulations a Pd lattice of 3 x 3 x 3 unit cells (containing 108 Pd atoms) was used, with 
periodic boundary conditions and a lattice parameter of a = 4.077 A (which is sli htly 
greater than the experimental value of 3.89 A) was fixed by the equation a = 4 r m i n ,  
where rmin is the Pd-Pd distance for which the potential (1) has a minimum (i.e. for 
which the palladium lattice is in mechanical equilibrium). The palladium-hydrogen 
interaction, which reproduces the local mode frequency of hydrogen in palladium, is 
given by 

( 2 )  

with A = 15.3 eV, p = 0.5 A and r l  = 3.8 A. Finally the hydrogen-hydrogen potential 
is arbitrarily set equal to the palladium-hydrogen potential (in order to avoid unphysical 
clustering effects): 

VH-H ( r )  = VPd-H ( r ) .  (3) 
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2.2. Site energies 

There are two types of site where the potential energy of a hydrogen atom in the 
FCC palladium lattice has a minimum: the octahedral sites and the tetrahedral sites. 
According to experiment (Nelin 1971) the hydrogen atoms occupy the octahedral sites. 
One expects that the occupations of octahedral and tetrahedral sites are determined by 
the site energies. In calculating the site energies, it is important to account for the lattice 
relaxation. Therefore a site energy is defined as the total energy of the lattice with a 
single hydrogen atom on the site of interest minus the total energy of the perfect lattice 
without hydrogen (at temperature T = 0). Following Gillan (1986), the site energies are 
calculated with the technique of damped molecular dynamics (Beeler and Kulcinski 
1972), which brings a system to mechanical equilibrium at T = 0. We find for the 
octahedral site energy a value of 1.605 eV and for the tetrahedral site energy .c2 a 
value of 1.900eV, in agreement with the values reported by Gillan (the hydrogen 
potentials in the relaxed lattices are respectively 1.555 eV and 1.811 eV, so that there is 
a substantial contribution of the Pd-Pd interactions to the site energies). 

2.3. Diffusion coefficient 

Constant-energy molecular dynamics simulations (Heermann 1986) of the model 
described above have been performed, with 20 H and 108 Pd atoms. 20 H atoms were 
chosen, instead of a single H atom, in order to increase the statistical accuracy. The Pd 
lattice of 3 x 3 x 3 unit cells is expected to be large enough to exclude serious size effects 
on the hydrogen diffusion. The system was started with the Pd atoms on their regular 
positions and the H atoms randomly distributed over the octahedral sites. An integration 
time step of 2.61 X s was used and five simulations of length 1.5 x lo4 steps were 
performed at temperatures of 535, 648, 791, 911 and 1058 K. The coordinates of the 
hydrogen atoms, averaged over successive intervals of 10 time steps, were recorded for 
later determination of various ensemble averages. 

The tracer diffusion coefficient D of hydrogen in palladium was determined from the 
mean square displacement of a hydrogen atom as a function of time. The obtained values 
are shown in the Arrhenius plot in figure 1, together with the data reported by Gillan 
(1986) and Culvahouse and Richards (1988) (who also used the model of Gillan). The 
full straight line is a fit to all the data and the activation energy E, determined from the 
slope is 0.30 eV, a value which is close to the difference - .cl between the tetrahedral 
and octahedral site energies of 0.295 eV (see § 2.2). This close agreement seems to be 
consistent with the fact that most of the hydrogen atoms jump between nearest-neigh- 
bour octahedral sites passing through the tetrahedral sites, as was shown clearly by 
Gillan. It should be noted, however, that the tetrahedral site is not a saddle point but a 
potential minimum. This means that for a jump a hydrogen atom (or, better, the whole 
lattice) has to overcome first a high barrier and then a low barrier. From the damped 
molecular dynamics calculations described in 8 2.2 we estimate that the height of the 
first barrier does not exceed the difference of the tetrahedral and octahedral site energies 
of 0.295 eV by more than a few hundredths of an electronvolt. 

In the real PdH, system, phase segregation of the hydrogen occurs at temperatures 
below the critical temperature T, of 568 K (Feenstra et a1 1986). In the simulations no 
indications of phase segregation were observed. In fact, the tracer diffusion coefficient 
is not affected by the effect of critical slowing down (Volkl and Alefeld 1978) and 
furthermore is expected to be only weakly dependent on the hydrogen concentration. 
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Figure 1. Tracer diffusion coefficient D of 
hydrogen in palladium from simulations: 
0, this work; 0, Gillan (1986); U, Cul- 
vahouse and Richards (1988). Also indi- 1 l l , I ] cated are a fit (-). amodelcalculation 

1.0 1.2 I 4  1.6 2.0 (---) (see D 4.3) and a line (---) 
representing the experimental data col- 
lected by Volkl and Alefeld (1978). T-' K - ' 1  

3. Site occupations of hydrogen in palladium 

The objective of this section is to determine the validity of the lattice gas approximation 
for the calculation of the site occupations of hydrogen in palladium. 

3.1. Lattice gas model  for hydrogen in  palladium 

We construct a lattice gas model for hydrogen in palladium by assuming that a hydrogen 
atom occupies either an octahedral site or a tetrahedral site and that a site can be 
occupied by at most one hydrogen atom. Then the total concentration c, defined as the 
number of hydrogen atoms in the lattice divided by the total number of sites, is equal to 

c = gix1 + g2x2 (4) 

where g ,  and g ,  are the fractions of octahedral and tetrahedral sites, respectively (with 
g ,  + g ,  = l), and x1 and x2  are the fractional occupations by hydrogen of Octahedral and 
tetrahedral sites, respectively. As an FCC unit cell contains four octahedral sites and 
eight tetrahedral sites, we have g,  = 4 and g, = 3 .  

The site occupationsxl andx, are determined by the minimisation of the free energy 
F = U - TS of the lattice gas. This leads to 

p1(XI,X2r T ) = l " 2 ( x l , x 2 ,  ( 5 )  

where ,ul = ( ~ F / ~ I N ~ ) ~ , , ~ ~  and p ,  = ( C ~ F / ~ N , ) ~ , ~ ~  are the chemical potec:ials of hydro- 
gen atoms at octahedral sites and tetrahedral sites, respectively. In general, lattice gas 
models with interacting particles are not exactly solvable (note that, in addition to the 
direct hydrogen-hydrogen repulsion, the lattice relaxation around the hydrogen atoms 
should be considered as an effective hydrogen-hydrogen interaction, which is the well 
known elastic interaction of hydrogen in metals). However, if one uses the mean-field 
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Figure 2. Octahedral site occupation x ,  and tetrahedral site occupation x 2  determined from 
the simulations (0). The curves correspond to the lattice gas model described in § 3.1. 

approximation for the hydrogen-hydrogen interaction, the following expression for the 
chemical potentials is easily obtained (Griessen 1983): 

iU,(x, > x 2 ,  T )  = E ,  + f ( c >  + kTln[n,/(l - x01 (i = 1,2)  (6) 

where the function f ( c )  (with f(0) = 0) represents the effective hydrogen-hydrogen 
interaction. From equations ( 5 )  and (6) it follows that 

+ kTIn[xl/(I - x l ) ]  = + kT1n[x2/(1 - x2)]. (7) 

The site occupations x1 and x2 as a function of the temperature T and the concentration 
c are determined by equations (4) and (7). 

3.2. Comparison with the simulations 

To determine the site occupations from the molecular dynamics simulations, an octa- 
hedral site was defined to consist of the entire octahedral around it, and a tetrahedral 
site was defined to consist of the entire tetrahedron around it. The faces limiting the 
octahedra and tetrahedra were defined in the perfect palladium lattice by the positions 
of the palladium atoms. In this way a hydrogen atom is always located at a site, and it is 
straightforward to evaluate the site occupations x1 and x 2  from the simulations. Note 
that the total number of sites in the simulations is 12 x 27, so that the concentration c, 
as defined in the previous section, is 0.061 73. 

In figure 2 the site occupations x1 and x 2  as determined from the simulations are 
compared with the values according to the lattice gas model (i.e. equations (4) and (7)). 
The agreement is reasonable. Note that at T = 1000 K the number of hydrogen atoms 
at tetrahedral sites is about 10% of the number of hydrogen atoms at octahedral sites. 
Below T = 600 K the occupation of the tetrahedral sites is almost negligible. 

3.3. Hydrogen in palladium alloys 

For the calculation of the solubility of hydrogen in palladium and palladium alloys, one 
usually neglects the tetrahedral site occupation and uses a mean-field lattice gas model 
for the chemical potential of hydrogen at the octahedral sites. For hydrogen in a 
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A- ; i /6 the eye. 

Figure 3. Experimentally determined site 
energies E ,  of hydrogen in Pd,_,Ag, and 
Pd,_,Cu, octahedra in Pd,_,Ag, (0) and 
Pd,_,Cu,, (0) alloys, respectively (Salo- 
mons et a/ 1989). The curves are guides to 6’6 0 2/6  L16 

disordered substitutional Pd,-,M, alloy (M = metal) there are different types of octa- 
hedral site. If one assumes that an octahedral site energy is determined only by the 
numbers of Pd atoms and M a t o m  in the octahedron, there are seven different types of 
octahedral site: Pd6, PdSMI, . . . , M6. The mean-field lattice gas model for H in Pd can 
then be generalised for H in Pd,-,M, with octahedral site energies E ,  and octahedral site 
fractionsg, (the index i denotes the number of M atoms in the octahedron). The fractions 
g, are determined by the random distribution of the metal atoms (assuming that the 
effect of short-range order in the alloy is negligible). By fitting this generalised model to 
solubility data of hydrogen in Pd,,,Ag, and Pd,-,Cu, alloys the site energies E ,  were 
determined (Salomons eta1 1989). It was found that the differences E ,  - E~ are approxi- 
mately independent of the solute content y ,  within experimental accuracy. In figure 3 
the differences E ,  - so are plotted as a function of i, for Pdl-,Agy and Pd,_,Cu,. 
Obviously the site energy E ,  is not a linear function of the index i. In this section we wish 
to investigate whether this non-linear behaviour can originate from the effect of lattice 
relaxation. 

As the inter-atomic interactions in the pure metals Pd, Ag and Cu are all rather 
similar functions of the inter-atomic distance (van Heugten 1979), one expects that the 
variation in the site energies E ,  shown in figure 3 originates mainly from the metal- 
hydrogen inter-atomic interactions. Therefore we repeated the damped molecular 
dynamics calculations with a single hydrogen atom at an octahedral site (see 0 2.2), with 
the following modification: we replaced a number i (i = 1 , 2 ,  . . . ,6 )  of the six nearest- 
neighbour palladium-hydrogen potentials by a different solute-hydrogen potential 
V(r) = A exp( - r / p )  (but with the same cut-off radius). In the cases where two different 
arrangements of the solute atoms in the octahedron are possible (this is the case for i = 
2 ,3  and 4) the site energy was determined by averaging with weight factors determined 
by the random distribution of metal atoms. 

Instead of trying to determine the parameters A and p of the solute-hydrogen 
potential V(r)  by fitting to a vibrational frequency or by calculation, we just investigated 
two possibilities. First we set V(r )  equal to the palladium-hydrogen potential (2) multi- 
plied by a factor of 1.6 (this potential is represented by curve B in figure 4). This resulted 
in the site energies E ,  represented by the open circles in figure 5 .  Next the potential V(r) 
represented by curve C in figure 4 was used, which resulted in the site energies E ,  

represented by the full circles in figure 5. Only in the latter case does E, as a function of 
i show a curvature comparable with the experimentally observed curvature (figure 3). 
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0 1 2 3 4 

r [ A I  

Figure4.Metal-hydrogenpotentialsV(r) = A  exp(-r/p):curveA,A = 15.3 eV,p  = 0.5 8, 
(palladium-hydrogen); curve B,  A = 24.48 eV, p = 0.5 8,; curve C, A = 1606.5 eV, 
p = 0.25 A.  

Figure 5. Octahedral site energies E ,  of 
hydrogen in a Pdl_,bM, alloy, with the 
potentials from curve B (0) and curve C 
(0) in figure 4 used for the M-H potential: 
__- , the situation if no lattice relax- 

' 

i / 6  ation occurs. 

The origin of the curvature in figure 5 can be understood as follows. If one palladium 
atom in the octahedron is replaced by a solute atom with a more repulsive metal- 
hydrogen potential, the lattice relaxes in such a way that the hydrogen atom is more 
distant from the solute atom than from the palladium atoms, thereby minimising the 
increase in site energy (the off-centre displacement of a hydrogen atom was found to be 
of the order of 0.1 A). This relaxation is more difficult if more palladium atoms are 
replaced by solute atoms. 

It should be noted that only the form of the metal-hydrogen potential V(r)  for 
r > 2.04 8, (2.04 A is the unrelaxed metal-hydrogen distance) affects the lattice relax- 
ation. As the curves A and C in figure 4 are not unrealistically different from each other 
for r > 2.04 A, we conclude that it is possible that the non-linear behaviour of the site 
energies E; as a function of i for Pdl-,Ag, and Pdl-,Cu, alloys originates from lattice 
relaxation. 
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4. Diffusion of hydrogen in palladium 

The objective of this section is to compare the diffusion coefficients determined from 
the simulations (figure 1) with the predictions of a lattice gas model. Instead of using the 
conventional random-walk model we decided to use the sophisticated correlated walk 
model of Fujita and Neugebauer (1988). 

4.1. Correlated walk model 

In the random-walk model a particle jumps between nearest-neighbour sites of a lattice 
at discrete times t = n t  (n  = 1 , 2 ,  . . .). In the model of Fujita and Neugebauer (1988) 
the particle may also remain stationary at a site instead of making a jump, and fur- 
thermore the direction of a jump may depend on the direction of the previous jump. For 
a walk on an FCC lattice the model prescribes the following rules (Okamura et a1 1980). 
If the particle arrives at a site at timet = n t ,  it may jump at time t = (n  + 1)t in the same 
direction as that of the previous jump with probability a, turn at 60" with probability 6 
(there are four possibilities to turn at 607, turn at 90" with probability y (two 
possibilities), turn at 120" with probability E (four possibilities), turn at 180" with 
probability 0, or it may become trapped (i.e. remain at the site) with probability 0. The 
following normalisation condition holds: 

a + 46 + 2y + 4~ + + O =  1. (8) 
If the particle is trapped at time t = nt ,  it may jump at time t = (n  + 1) t in  any direction 
with probability p ,  or remain trapped with probability D ' ,  with the following nor- 
malisation condition: 

12p + 0' = 1. 

D = S[(l + A)/(1 - A)]{l/[l + a(1 - o ' ) - ' ] } (a ; / t )  

(9) 

(10) 

The tracer diffusion coefficient D for this model is given by (Okamura et all980) 

with A = a + 26 - 2~ - /3 and a. the jump distance. For the jump distance of hydrogen 
in palladium we take the geometrical distance between two neighbouring octahedral 
sites, although the real jump path is slightly longer (about 25%). The factor (1 + A)/ 
(1 - A )  is a correlation factor, which is unity for a random walk. The jump time t is 
given by (Fujita and Neugebauer 1988) 

t = ao/u  (11) 
where U = g ( 2 k T / ~ m ) ' / ~  is the average speed of a jumping particle, with m its mass and 
g a numerical factor which varies between 1 and 3 if the activation energy varies between 
0 and 11 kT.  We take g = 2. 

4.2. Comparison with the simulations 

For the comparison of the correlated walk model with the simulation model we define 
the jump correlation function g ( t ' )  as the probability per unit time that a particle 
(hydrogen atom), which made its last jump at time t = 0, makes a jump at time t = t' (in 
any direction), 

It is straightforward to determine the jump correlation function from the simulations. 
A jumpissaid to take placeat themoment that ahydrogenatomentersanewoctahedron. 
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I .  I 

Figure 6. The jump correlation function g(t)  determined from the simulation at T = 911 K 
(0) and according to the correlated walk model with U = U’ = 0.87. 

In figure 6 the jump correlation function as determined from the simulation at T = 91 1 K 
is represented by the full circles (in total, 831 nearest-neighbour jumps were registered 
in this simulation). 

According to the correlated walk model the jump correlation function g(t)  is not a 
continuous function of time, as a particle can jump only at discrete times t = n t  (n  = 
1,2 ,  . . .). Hence g(t) is a sum of 6 functions: 

z 

g(t) = (1 - u>s(t - t) + u(1 - ar)u’n-*6(t - n t )  (12) 
n = 2  

as follows from the definition of the probabilities B and U ’ .  For the comparison with the 
jump correlation function determined from the simulations, the 6 functions are smeared 
out over time intervals with width t and centred at t = n t  (n = 1 ,2 ,  . . .). This leads to 

The best fit of equation (13) to the jump correlation function determined from the 
simulations was obtained for U = B’ = 0.87. For clarity this fit is shown in figure 6 as a 
set of peaks located at t = n t  (n = 1 , 2 , .  . .). Note that the conventional random-walk 
model predicts a single peak located at t = 0.78 ps (as follows from the random-walk 
formula D = a i / 6 t  and the value of D at T = 911 K). 

It is surprising that the best fit is obtained for U = U ’ .  One would expect that B’ > U ,  

since a trapped hydrogen atom is expected to have a larger probability of remaining 
trapped than a jumping hydrogen atom. A possible explanation of the equality U = U‘ 

is that a jumping hydrogen atom does not lose its excess kinetic energy immediately 
after trapping but rather loses it during several vibrational periods (a vibrational period 
is of the order of 0.06 ps). This means that the probability of remaining trapped increases 
slowly with increasing residence time of a hydrogen atom at a site and that the fitted 
values U = B’ = 0.87 represent the probability of remaining at a site averaged over the 
residence time. 

The fact that the probability U of remaining at a site is close to unity implies that the 
correlation factor (1 + A)/(l - A) in equation (10) is close to unity, as can be seen 
as follows. Equation (8) and B = 0.87 imply that a, p, y ,  6, E 1. Hence A <c 1 and 
(1 + A)/(l - A) 1. 
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The fitted values (T = 0’ = 0.87 imply that the jump probability is 1 - (T = 0.13 at 
T = 911 K. This jump probability is about twice the equilibrium probabilityg2x2/c that 
a hydrogen atom is located in a tetrahedron (see 0 3). This can be understood by the fact 
that a jumping hydrogen atom spends about half of the jump time in a tetrahedron and 
half of the jump time in an octahedron. 

It should be noted that Culvahouse and Richards (1988) have made a more accurate 
fit to the jump correlation function of the simulation model. The reason why we have 
performed the above-described fit is that we wanted to construct a simple model for the 
diffusion coefficient, which is described in the next section. 

4.3. A random-walk model f o r  the diffusion coeficient withoutfitted parameters 

Let us now use the information obtained in the previous section to construct a simple 
random-walk model for the diffusion coefficient of hydrogen in palladium (or more 
general, in an FCC metal). We start from equation (10) and use 

(1 + A)/(l - A) = 1 (14) 

( T =  0’. (15) 

D = i(1 - o)(a’ , / z )  (16) 

and 

It follows that 

in which the jump probability 1 - 0 is given by 

1 - (T = 2g2x2 /c  

and z is given by equation (11). The tetrahedral site occupation x 2  is determined by 
equations (4) and (7). 

In figure 1 we show the comparison of the diffusion coefficient according to equation 
(16) with the values determined from the simulations. The agreement is satisfactory. It 
should be noted that the objective was to compare the diffusion coefficient according to 
the lattice gas model with the values determined from the simulations (and not with the 
experimental data for the real PdH, system). Finally, for c+ 0, equation (16) reduces 
to the following Arrhenius form: 

D = $(ag / z )  exp[ - ( E *  - E ~ ) / ~ T ] .  (18) 

For the concentration c = 0.061 73 used in the simulations this expression yields values 
which differ less than 20% from the values according to equation (16). 

It should be noted that in this form the model cannot explain the reversed isotope 
effect of hydrogen diffusion in palladium. This would require the introduction of the 
zero-point energy of a hydrogen atom (Fujita 1989). 

5. Conclusions 

It has been shown that a mean-field lattice gas model predicts the equilibrium octahedral 
and tetrahedral site occupations of hydrogen in palladium reasonably well. This justifies 
the lattice gas description of the equilibrium behaviour of hydrogen in palladium, or 
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more general in FCC metals. It would be interesting to use the simulation model of Gillan 
for a sensitive test of the mean-field approximation for the effective hydrogen-hydrogen 
interaction. Such a test would be rather difficult, however, since a mean-field interaction 
has an infinite range, so that a large lattice should be used for the simulation. Further- 
more, the effective hydrogen-hydrogen interaction in palladium contains an electronic 
band-filling effect (Feenstra et a1 1986) not accounted for by the simulation model. 

The diffusion coefficient of hydrogen in palladium has been compared with the 
predictions of the correlated walk model of Fujita and Neugebauer (1988). It turned out 
that this model reduces in good approximation to a simple random-walk model for 
hydrogen in palladium. For the calculation of diffusion coefficients this random-walk 
model is rather useful, since it does not contain a vibrational frequency as a fit parameter 
(as in conventional diffusion models (see, e.g., Murch and Thorn 1977)). 
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